An interval-matrix branch-and-bound algorithm for bounding eigenvalues

نویسندگان

  • Dimitrios Nerantzis
  • Claire S. Adjiman
چکیده

We present and explore the behaviour of a branch-and-bound algorithm for calculating valid bounds on the k-th largest eigenvalue of a symmetric interval matrix. Branching on the interval elements of the matrix takes place in conjunction with the application of Rohn’s method (an interval extension of Weyl’s theorem) in order to obtain valid outer bounds on the eigenvalues. Inner bounds are obtained with the use of two local search methods. The algorithm has the theoretical property that it provides bounds to any arbitrary precision > 0 (assuming infinite precision arithmetic) within finite time. In contrast with existing methods, bounds for each individual eigenvalue can be obtained even if its range overlaps with the ranges of other eigenvalues. Performance analysis is carried out through nine examples. In the first example, a comparison of the efficiency of the two local search methods is reported using 4,000 randomly generated matrices. The eigenvalue bounding algorithm is then applied to five randomly generated matrices with overlapping eigenvalue ranges. Valid and sharp bounds are indeed identified given a sufficient number of iterations. Furthermore, most of the range reduction takes place in the first few steps of the algorithm so that significant benefits can be derived without full convergence. Finally, in the last three examples, the potential of the algorithm for use in algorithms to identify index-1 saddle points of nonlinear functions is demonstrated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Exact Algorithm for the Mode Identity Project Scheduling Problem

In this paper we consider the non-preemptive variant of a multi-mode resource constrained project scheduling problem (MRCPSP) with mode identity, in which a set of project activities is partitioned into disjoint subsets while all activities forming one subset have to be processed in the same mode. We present a depth-first branch and bound algorithm for the resource constrained project schedulin...

متن کامل

A Novel B and B Algorithm for a Unrelated Parallel Machine Scheduling Problem to Minimize the Total Weighted Tardiness

This paper presents a scheduling problem with unrelated parallel machines and sequencedependent setup times that minimizes the total weighted tardiness. A new branch-and-bound (B and B) algorithm is designed incorporating the lower and upper bounding schemes and several dominance properties. The lower and upper bounds are derived through an assignment problem and the composite dispatching rule ...

متن کامل

Rigorous Convex

In order to generate valid convex lower bounding problems for noncon-vex twice{diierentiable optimization problems, a method that is based on second{ order information of general twice{diierentiable functions is presented. Using interval Hessian matrices, valid lower bounds on the eigenvalues of such functions are obtained and used in constructing convex underestimators. By solving several non-...

متن کامل

A note on positive deniteness and stability of interval matrices

It is proved that by using bounds of eigenvalues of an interval matrix, someconditions for checking positive deniteness and stability of interval matricescan be presented. These conditions have been proved previously with variousmethods and now we provide some new proofs for them with a unity method.Furthermore we introduce a new necessary and sucient condition for checkingstability of interval...

متن کامل

Computing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method

A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2017